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ABSTRACT f

7//85

A two-dimensional path generator which produces absolute

digital interpolated path control information from discrete input

are specified at equal interva!s of one of the variables. A central

interval interpolation scheme is used, i.e. the path in each

interval is a section of the third order polynomial which passes

through four successive input path points including the end points

of the interval, the previous path point, and the next path point.

The polynomials are generated by three connected digital inte-

grators operating upon the respective derivatives of the poly-

nomials. Simple corrections to two of the integrators allow

changing from the polynomial appropriate in one interval to that

appropriate to the next. Provisions are inchded which allow the

generation of both single valued paths and closed contours. A

scaling and error analysis of the path generator are made allow-

ing given performance criteria to be met.

A two-dimensional plotter is constructed which converts the

digital outputs of the generator into a graphical record. The

combination of the generator and the plotter represents a path

control system. Various path records of this system along with

examples of the input data preparation are presented. __FI__O_
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CHAPTER I

PATH CONTROL SYSTEMS

Introduction

The purpose of a path control system is to control precisely

and continuously the relationship between the output variables of

the system. The desired relationship is previously determined

and is usually supplied as a limited amount of input data. Gener-

ally the variables represent positions although this is not a

binding restriction. Definite power requirements are inherent in

the control of the variables. Although the maintenance of the

relationship between the output variable s at all time s is the

primary requirement, depending on the particular application,

the maintenance of a given path velocity or a component velocity

may also become important.

The question arises how an effective path control system

might be achieved. An answer that has been widely accepted is

the use of the outputs of an accurate path generator as the inputs

to high performance power servomechanisms, one servo being

used for each variable. Such a system is shown in Fig. 1.1.

The use of high resolution feedback elements and high gains in the

servos allows accurate following of the outputs of the path

generator by the outputs of the servos.
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A system of the form of that shown in Fig. 1.1 is the sub-

ject of this research. Before details of this are discussed,

however, an enumeration of the advantages of the use of digital

techniques in such a system and a discussion of the components

of the system will be presented.

Digital Technique s

Early path control systems were based upon analog methods

13, 14, 18, 26*
and components. Such systems, however, had

inherent restrictions. To remove these restrictions and to

achieve additional advantages, later systems employed digital

4, 7, 15, 21
te chnique s.

In a digital system, a variable is measured by the state of a

circuit or a transducer, not by the magnitude of an output signal

as is the case with analog circuits or transducers. This type of

measurement or representation reduces the effects of noise and

greatly extends possible accuracy limits. Resolution is dependent

on the number of discrete digital increments assigned to the range

of a variable. In analog systems, the resolution of each compo-

nent must be increased. This is limited by the state of the art in

component manufacture and also by the prohibitive costs of

The superscript numerals refer to the Bibliography.
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extremely precise components. Another advantage realized by

digital systems with particular importance in the area of the path

generator is that accuracy and resolution do not degenerate with

transmission or manipu!ations_ since !inearity in amplification

and preservation of precise wave forms are not essential. Thus

during calculations or manipulations non- degenerative sto rage

can be easily provided.

Because of these advantages, digital techniques will be used

in both the path generator and following servomechanisms of the

system which is described in this report.

Path Generator

The path generator operates upon the limited amount of

input data to supply continuous real time information to the servos.

If the data is in the form of distinct path points, the path generator

performs interpolation. If the input data is in the form of mathe-

matical equations of the path, the generator performs a continuous

evaluation. Data in the form of path points or equations can

usually be obtained by hand calculation or limited machine calcu_

lation. The path generator is actually then a special purpose

10
computer which completes the processing of the input data.

The choice could be made of having the servos controlled

directly by a general purpose computer with h_th the initial data



processing and any interpolation or evaluation being performed

there. However, this means engaging a general purpose computer

continuously with a resultant high cost of operation. Thus, for

economic reasons, the compromise is rn__ade that any extensive

input data processing is quickly done in a general purpose com-

puter and the real time processing is handled by the path generator

leaving the general purpose machine free to perform other tasks.

Up to the present time, only incremental digital techniques

have been used in path control systems. In such techniques_ a

pulse is generated by the path generator on an output variable line

for each desired increment of movement in the following servo-

mechanism of that variable. Both positive and negative increment

pulses can, of course, be generated.

If instead of providing a pulse for each desired increment of

movement of a variable and thus defining any changes with

respect to the previous value, a path generator could also

operate in a fashion that the absolute position number of each

variable is presented, this absolute number changing as the value

of the coordinate changes along the path to be traversed. Thus

all values are referenced to absolute points, and not to just the

previous points.
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The two forms of output information available from the path

generator, i.e. incremental or absolute representation, dictate

the type of servo which must be used to accept the data.

Digital Servomechanisms

A digital servomechanism is one in which control signals in

one or more portions of the system are expressed in a numerical

code. There are two basic classifications for digital servo

systems corresponding to the farm of the input and feedback

i6
information: absolute systems and incremental systems.

A simple incremental servo system for one variable is

shown in Fig. 1.2. The input data is in the form of direction

sensitive pulses, each of which represents a desired incremental

change of the controlled variable. The time between input pulses

is indicative of the desired rate of change of the output. A

quantizer, a direction sensitive device which emits a pulse

whenever the controlled variable takes on specified values, is the

transducer used in the feedback path. Comparison is accomplished

by a bidirectional counter (BDC) which accepts both input and

quantizer pulses in such a manner as to count up for positive

transitions of the input and negative transitions of the controlled

variable, and count down for negative inputs and positive changes

of the output. Thus, the resultant count in the counter equals the
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digital error in increments. The corresponding analog signal

which is produced by the digital to analog converter (D/A) directs

the controlled system changing the controlled variable to reduce

the error.

To obtain path control, a train of pulses is supplied from

the path generator and applied to the input of the bidirectional

counter. The number of pulses supplied represents the desired

change in position in increments and the manner in which they

enter the system represents the path.

A block diagram of a simple absolute system for control of

one variable is shown in Fig. 1.3. Input data, the desired value

of the controlled variable, is in the form of absolute coded

numbers. An encoder in the feedback path converts the controlled

variable into another coded number. A comparator produces the

difference of these numbers, the digital error. The corresponding

analog signal which is produced by the digital to analog converter

(D/A) directs the controlled system, changing the controlled

variable to reduce the error.

To provide path control, one must supply as input data the

coded numbers representing closely spaced points on the desired

path. These points are supplied as a function of another
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variable such as time or a second system variable. The closer

the points are located, the better the approximation is to the

de sired path.

Comparison of Incremental and Absolute Digital Servomechanisms

started over,

point.

The following servomechanisms associated with a path

control system are usually subjected to severe enviro_ntal

conditions. Therefore, reliability in these is of great importance.

In an incremental digital servomechanism, pulses might be

added or lost through an intermittent component failure or noise

introduced by supply or line voltage fluctuations. These errors

may cancel one another but there is a greater probability that

they will accumulate. Since each new change is based on the

previous value, accumulated errors can cause unsatisfactory

final results. Also in an incremental servo system, power failure

results in loss of reference position. The whole process must be

or at least must be referred back to some check

An absolute digital servomechanism may also have spurious

errors introduced. However, since such a system is based on an

absolute reference, errors do not accumulate. Any stoppage

through a power failure or other interruption does not cause

serious problems in re synchronizing the servo with the input data
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since the point of interruption can be returned to through use of

the absolute reference and operation continued.

From the above discussion, it can be seen that there are

advantages in the use of absolute digital servomechanisms.

However, these have not been used in path control applications

due to the lack of satisfactory path generators to supply continual

absolute digital path information to the servos. Therefore, this

research is concerned with the design, construction, and evalua-

tion of an absolute digital data path generator which is used to

control two absolute digital data servo systems, the combination

serving as a two-dimensional @_th control system.

The generator is designed to fit a "smooth" function

through discrete path points which are spaced at equal intervals of

one of the variables. This function consists of interlaced sections

of third order polynomials. The polynomials are generated by

three connected digital integrators operating upon the derivatives

of the polynomials. Thus the path generator might be considered

as a third order interpolator. Actual input data is not the path

points but, once initial conditions are set, consists only of fourth

differences of the values of the dependent variable at the discrete

path points.
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Desi gn details and final performance records of the

system may be found in the following body of this report.

Actual construction details are considered in Appendices

II and III.



CHAPTER II

THE PATH GENERATOR

Method of Path Generation

The two-dimensional generator of this research has been

designed to perform as an interpolator, i.e, it produces a

"smooth" function from discrete path points. These path points

are specified in a Cartesian system by x and y position variables.

The only restriction upon the path points is that they be spaced at

equal intervals of one of the variables. This restriction has been

placed because, as will be seen, it results in a considerable

simplification of equipment and of input data preparation. It is

not a serious restriction since, as also will be seen, changes in

scaling and in which of the two variables has the equally spaced

requirement can be made as different portions of the path are

generated. Thus quite a wide variety of spaced points can serve

as inputs. To avoid later confusion, the nomenclature is

established that the variable along which the points are equally

spaced is called the independent variable and the remaining one,

the dependent variable.

The "smooth" function connecting the discrete points is

formed by interlacing third order polynomials. To see how this

is accomplished, consider the path points shown in Fig. 2.1.

-13-
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y(x)

GENERATED
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FIGURE 2.1 PATH GENERATION
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Here x is the independent variable along which path points are

supplied at equal intervals h. Assume that the path has been

generated up to the point (xg,yz). To produce the portion

between (x_,y_)_ _ and (x 3,y3)_ a third order ooivnomial.. is fitted

through the four points {xl,Yl), (xz,yg) , {x3,Y3)and (x4, Y4).

Then only the central section of the polynomial, that between

(x 2, yz) and (x3, y3), is actually generated. To produce the

section between (x3,Y3) and (x4, y4) , a third order polynomial is

fitted through the four successive points beginning with (x 2, y2)

and again only the central section is actually generated. This

process of fitting a third order polynomial through four data

points and then actually using only the central section is continued

to produce the total path. The use of only the central section

gives both a look ahead and a look back feature.

The method just described is used with slight modifications

in generating other than single valued functions and in generating

discontinuous functions. Equipment limitations dictate modifica-

tions under certain other conditions. These modifications along

with starting and terminating procedures are discussed later.

The "smoOth" function germ rated can have discontinuities at

the point of change from one section to the other so that it is not

mathematically smooth. The discontinuities become smaller as
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the points fall closer to a continuous third order curve. Also

since the function is generated digitally there is an inherent

quantization effect. This quantization effect can be seen in the

output records shown in Chapter Ix/.

Since the path is to consist of interlaced third order poly-

nomials, the problems arise as to how these might be generated

and also how corrections might be introduced to the generator to

change from the polynomial being generated in one section to the

one which is required in the next section. These problems will

now be discussed.

Generation of a Third Order Polynomial
i ....

A third order polynomial, y(x), can be written as

y(x) = %x 3 + azx 2 + alX + a o (2-1)

where a3,a2,al, anda 0 are coefficients. This might be evaluated

at any point x by finding the various powers of x, multiplying

them by the appropriate coefficients and adding all the terms. All

this computation must be performed for each x desired. For path

control x is usu_lly constantly changing so that y(x) must be

constantly reevaluated. For real time o'peration such a method of

polynomial evaluation requires a large amount of fast computing

equipment. The economic requirements become prohibitive.
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Another method of polynomial generation involvestthe use of

connected integrators.

derivative is constant.

For a third order polynomial the third

Integration of the third derivative

produces the second derivative which in turn when integrated

produces the first derivative. Integration of the first derivative

yields the function. Thus, integrators can be cascaded as shown

in Fig. 2. Z to generate the desired function. Appropriate initial

values of the derivatives and of the function must, of course, be

set in. Now as x increases the polynomial ,,fv% is r_,_,_,_,,_,,_l,,

generated. Such a technique for function generation has been used

previously employing mechanical integrators. 13, 14 It is desired

to achieve the same results using digital techniques. So integra_

tions must be performed digitally.

Digital Integration

For the general case there exists no technique for achieving

exact inte g ration using digital technique s.

several approximate numerical methods.

However, there are

Considering the amount

and operational speed of the equipment needed, the method most

suitable for use in real time path control applications is the

summation of rectangular areas approximation. To see how this

works, consider that it is desired to integrate the function y(x)
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from x 0 to x I as shown in Fig. 2.3. The continuous integration

is approximated by a finite summation as

Xl N- 1

y(x) = z
i=O

0

y(xi) _ (2-2)

where Ax =
xI - x0

N ' x" =Xo1 + lax, and N is the number of

rectangles used in the approximation. The approximation becomes

better as N is increased or correspondingly as Ax is decreased.

Notice,that since Ax is a constant

N-I N-I

iZ=oy(xi)_ : _x z
i=O y(xi) (2-3)

So only the values of the Y(Xi) need be summed. The Ax appears

as a scale factor term.

To see how the integration might be implemented, consider

the arrangement of Fig. 2.4. Here, there are two digital

registers and connecting arithmetic circuitry. The current value

of y(x) corresponding to the current value of x is contained in the

integrand register. As the numerical approximation to the

i_tegral,: it is desired to have the running sum of the various

y(xi) in the integral register. This is accomplished by adding

the integrand register to the integral register every time a Ax

command pulse occurs, i.e. every time the variable x increases
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INTEGRAL J'y(x) dx
REGISTER
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• v t

CORRECTIONS

FIGURE 2.4 DIGITAL INTEGRATOR
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by the increment L_x. The current value of x can be maintained

by counting the _x pulses. Notice that the integration is time

independent and depends only on the arrival of _x pulses. The

the integrand register between arrival of __Axpl!]_ses.

Since this is a digital system, numbers in the registers are

contained in the form of a sign bit and a binary representation of

the magnitude. A natural binary representation will be used for

positive numbers. However, for ease of operation of the

arithmetic circuit, a special code will be used for the magnitude

of negative numbers. This will be discussed later. At the

present let it be assumed that the arithmetic circuitry can handle

the numbers to preserve the proper sign and magnitude repre-

sentations.

The scaling rule for the integrator registers follows

directly from Eq. 2-2. This rule is that the weight of a bit in the

integral register is equal to the product of the weight of the

increment Ax and the weight of the corresponding bit in the

integrand register.

The lengths of the registers shown in Fig. Z. 4 have been

arbitrarily set. For an actual integrator, these lengths are quite

important because they govern the accuracy and capacity of the
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integrator. The discussion of integrator accuracy and capacity

will be postponed, however, until the entire path generator is

de signed and these considerations can be discussed for the total

system.

Generation of a Third Order Polynomial Using Digital I ntegrators

Digital integrators c_n be connected in the manner that has

previously been shown schematically in Fig. 2.2. This connection

to generate a third order polynomial is shown in Fig. 2.5. Notice

that a portion of the integral register of one integrator unit is used

as the integrand register to the next unit. Also notice that since

the third derivative of such a polynomial is constant, no updating

is needed in that register. The maintenance of new values in the

remaining registers is achieved through the action of the

connected integrators. Initial conditions are set in the registers

before starting the generation.

The integrators may be processed in either a parallel or

serial fashion. Processing in a parallel fashion can introduce

timing problems. To avoid these, serial processing has been

chosen. The processing of the integrator units is done in the

order 1, 2, 3. This leads to the following equations:

y(xi+l) = y(xi) + y'(xi)Z= (Z-4)
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y'(Xi+l ) = y,(_i) +y,,(_i)Z_x (2°5)

" + (2-6)y (xi+I)= y"(xi)+ y"'(xi)_x

As will be shown,

of the integrators.

correspond to the _appropria.teu-v_f_g,_]_ integration formulas.

Any other processing order does not lead to valid approximation

formula s.

The proper processing order is represented in Fig. 2.5by

routing the Ax command pulses to the arithmetic units through

delay elements. The Ax pulses are accumulated in a counter to

maintain the current value of the variable x.

If appropriate initial conditions are introduced, the scheme

of Fig. Z. 5 can generate any single third order polynomial.

However, the path is to be composed of interlaced polynomials.

The problem then is to change from one polynomial to the next.

this can be done by making corrections to two

These corrections will involve only a function

of the fourth differences of the dependent variable. Thus, with

the addition of correction making circuitry, the system of

Fig. 2.5 can then generate the entire desired path.
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Integrator Corrections

Before the corrections needed in the integrators at the

transition from one interval to another can be investigated, a

general interpolation formula which can be used to represent the

third order polynomial in any central interval is needed. Since it

will be shown that corrections can be represented in the form of

differences of the dependent variable, it is easier to deal with a

general interpolation formula in terms of differences. Such an

interpolation formula is developed in Appendix I.

To determine the necessary changes, consider the problem

of the transfer from the generation of the interval between

(xl,Yl) and (xz, y2 ) of Fig. Z.1 to the interval between (xZ, yz )

and (xB, Y3 ) . For interpolation in the interval from x = x I to

x = x 2 = x I + h, the function y( x) is given, as shown in

Eq. A. 1-7 of Appendix I, by

y(x 1 + ah) = Yl + aAYl + a(az_,l) AZY0 (2-7)

+ - I)
+ 6 Yo

where 0< a < 1. The differences are defined in Table 2.1.

For interpolation in the interval from x = x 2 to x = x B = x 2 + h,

by a change of subscripts the appropriate interpolation function
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TABLE 2.1

DIFFERENCE TABLE

Y_Z_

x0 Y0

AY0 A2
Xl Yl Y0

AYl 2

x2 Y2 A Yl

AY2 A2
x3 Y3 Y2

AY3 ZiP.
x4 Y4 Y3

_Y4 Zi_
x5 Y5 Y4

AY 5

x6 Y6

Zi3y0

Zi3y1

Zi3y2

A3y 3

A4y 0

A4y 1

Zi4yz

Gene ral Relationship

A m = Am-I Am-I
Yk Yk+l - Yk ' rn = I, 2, 3, ,..

Zi0whe re Yk Yk and A 1= Yk = AYk
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y(x) is then given by

y(xz + _h) = Yz + _ _Yz + _ (_ " 1) _z2 Yl

(. + i w. _t. 1 _
+ _,- /_,_/x,* " / A_y 16

(z-s)

Differentiating Eq. 2-7 successively with respect to a yields

2

hy'(x 1 + ah) = _Yl + (2a - 1). (3= - 1) _3g AgYo + '6 YO {z-9)

hZy"(Xl + h) AZy 0 + A 3a = a Y0 (z-lo)

h3y'"(xl + ah) A 3= Y0
(2,-11)

Letting a = 1 in this set of equations

i. 1 A3
hy'(x2) = AYl +,"2"'Z_2Yo +"3" Y0

hZy"(x2 ) = A2y 0 + A3y 0

h3y"'(x2) = A3y 0 (z-14)

Succe s sively diffe rentiating Eq.

hy,(x z + _h): ny z _ (z_- 1)2

Z-8 w_th re spect to e give s

nzyl+ (3,_z - I)n36 Yl
(2- 15)

h2y"(x2 + ah) A2y I + A 3= a Yl
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h3y'"(xx + ah) A3 (Z-17)= Yl

Letting a = 0 in the last three equations

I AZ I _3 (Z_18_
hy,(_z) : nyz -v Yl -_ Yl

hZy"(xz) = A"y 1

h3yV,,(xz) A 3= Yl

Subtracting Eq. Z-IZ from Eq. Z-18 yields

I AZ I A3
_(hy'Cxz) ) = _YZ "_ Yl "_ Yl " _Yl

1 AZ 1 A3"_ Yo-_ Yo

1 _ 1 A3 1
=_ (_ZY 1 AZY0) -_ Yl - _ A3y0

(½ 1 _ i_3: _) Yo " _ Yl

I _ n3y0)= - _ (A3yl

1 A 4
_" = = _" Y0

Therefore, as x increases through Xzo a change in the first

1 A4yode rivative of - _- must be made in order to change from

the polynomial appropriate for the interval x I to x 2 to that of

the interval x Z to x 3.

(z-19)

(2-20)

(Z-Zl)
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Subtracting Eq. Z=13 from Eq. 2-19 gives

_(hZy,,(xz) ) A2 _ A3= Yl - A2y0 Y0

A 3 A3y 0= Y0 - = 0

So, no change is necessary in the second derivative.

Subtracting Eq. 2-14 from Eq. 2-20 produces

A(h3y,,,(x2 ) ) _3 _ A 3= Yl Y0

= A4y 0

A4y 0

Thus, a change of hB must be made in the third derivative.

So once the integrators are initially set, in order to

proceed through successive interpolation intervals, corrections

to only two of the integrators mu_t be made at the interval

points. The two corrections are functions of only one piece of

13, 14
difference information, the fourth difference.

Initial and Final Conditions

Initial conditions are needed in the integrator registers

before starting the generator.

provided as shown in Fig. 2. I.

Suppose that the path points are

The needed initial conditions

(2-22)

will be found from the third order polynomial which passes

through the first four points. The initial function values are the



-31-

starting coordinates x 0 and Y0" The remaining initial conditions

are y'(x0), y''(x0), andy'"(x0). These are the derivatives of

the polynomial evaluated at x 0. Since it is not desired to generate

"m, r'14"_¢ .... 4- ","_"_.1 _¢'_--'_1 _ _1_: _ ( Xl ' 1),.,v.,.y....... _.,. upon y , no correction i s

.... _ ._ ,. I_ _ ,-1 +%.
introducedhere_ Once po_+ (x2, y2 ) is ............ e proper

fourth difference exists and the generator proceeds in the normal

fa shion.

The equation, in terms of differences, of the function

passing through the first four points was developed in Appendix I

as Eq. A-l-6 and is

A 2
AYo YO

Y(x) = Y0 +--_ (x - %) +_ (x- x0)(x - xl )
Zh 2

(2-24)

A3y 0

6h 3
(_- _0)(_- xl)(x- xz)

The various derivatives are obtained as follows.

A 2
AYo YO

y'(x) = _+ _ ( (x - x0) + (x - x 1) )
Zh Z

(zoz_)

A3y0

+_( (x- %)(
6h 3

- x1) + (x - x0)(x - x2)

+ (_- Xl)(X- xz) )
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y,,(x) :
A2y 0 A3y 0

+_
h2 3h 3

( (x- %) + (,:- x 1) +(x-x z) ) (z-z6)

y,,,(x) -
A3y 0

h 3
(z-27)

Evaluating the se de rivative s at x : x 0 give s

&2 &3
LXY0 Y0 Y0

y,(Xo) : --_ + -- (-h) + -- (-h) (-Zh)
2h Z 6h 3

&2
1 Y0 &3y0

+_,): _ (AY0 z 3

AZy 0 A3y 0

y"(Xo) = hZ + 3h 3 ((-h) + (-2h))

(2-28)

: l Az
h Z ( Y0 " A3y0) (Z-29)

A3y 0

yt)'(x0) = h3 (2-30)

Thus, the initial conditions for the derivative registers

have been evaluated in terms of the initial differences.

The last interval is generated by assuming that the last

fourth difference is zero, i.e. no correction is given the inte=

grators at the start of the last interval. Thus the function
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generated over the last interval is a segment of the third order

polynomial which passes through the last four points.

The system of Fig. 2.5 is modified as shown in Fig. 2.6

to handle initial conditions and corrections. The basic operation

at each interval point is the addition of information from the input

data source to the appropriate derivative registers. Initial clear-

ing instructions are included if the input information consists of

initial conditions. Otherwise, no clearing is done and the

necessary corrections are added.

Use of this initial condition feature allows discontinuous

paths, i.e. paths in which there is a sharp change in derivatives

at a point, to be generated. This is done by setting in new initial

conditions to the derivative registers at the point of discontinuity.

The x and y values do not change at such a point so no provision

is needed to enter new conditions here. Thus initial conditions

are set in the output registers only at the start of any path. This

is done manually. Changing these initial conditions allows _a_rious

offsets to be introduced.

Repre sentation of Number s

In order that an integrator unit may handle all possible

cases, both positive and negative numbers must be representable

in the registers. This implies that each register must contain a



-34-

OUTPUT REGISTER, y(x)
I_ll lit iivl
HI I... I ... IIN

I ARITHMETIC UNIT

y'(x)l_

CONDITION
l_! ARITHMETIC UNIT

OR

CORRECTION

INITIAL CONDITION

INPUT

DATA

INITIAL CONDITIONS

SET MANUALLY

INITIAL CLEAR

CONTROL

OUTPUT REGISTER, X

ARITHMETIC UNITS CONTROL

-- -4

I
I

-4

!

I
I
I
I
I

I
I

INITIAL
CONDITIONS

SET
MANUALLY

FIGURE 2.6 CORRECTION AND INITIAL
CONDITION PROVISIONS



_35-

sign bit plus a representation of the magnitude of the number

contained. The coding of the magnitude can be done in several

3
ways.

A natural binary representation can be used for the

magnitude of both positive and negative nurnbers. If such a

scheme is used, depending on the signs of the numbers in the

registers, the basic summation operation of the integrator can be

interpreted as either addition or subtraction. A rather compli-

cated arithmetic unit with special sign circuitry then becomes

necessary. If a one's complement representation is used for the

magnitude of negative numbers, natural binary still being used

for positive numbers, special correction and interpretation

circuitry is still needed in the arithrneti_ unit. However, if two's

complement is used tO represent the magnitude of negative

numbers, there is no need for extra sign or function determination

circuitry. Only a straight binary adder is needed where the sign

bits, a 0 for positive numbers and a 1 for negative numbers, are

treated the same as the other bits. Overflow carrys from the

last stage are neglected.

The addition of two positive numbers according to the rules

of binary arithmetic then results in the correct natural binary

result and is still positive. The addition of a positive number and
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the two' s complement representation of a negative number re sults

in the correct natural binary answer if positive or in correct two's

complement form if negative. The addition of two two's comple-

correct two's complement answer.

To verify the last two statements, consider operations

using the two positive numbers A and B. The numbers and any

possible results are to be bounded in magnitude by 2n-I i.e

only n-I register bits are required to represent the magnitudes of

th
the numbers. The n register bit contains the sign. This

bounding is done since overflows are to be neglected in the chosen

scheme. Thus, scaling must be such that the results themselves

do not cause any overflows.

The operation A-B is achieved by implementing A+(-B).

The two's complement representation of (-B) considering the sign

is (2n-B). Physically, the two's complement of a binary number

is formed by complementing every bit of the number, including

the sign bit, and then adding I, i.e. the one's complement,

2n_l-B, is first formed and then a 1 is added to give 2n-B, the

two's complement. Then,

A + (oB) = A + (2 n- B) = 2 n + (A- B) (2-31)
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If A >_. B, there is an overflow Zn and the positive number (A-B)

results. IfA < B, A + {-B) = 2 n- (B - A) which is the correct

two's complement representation.

operation (-A) + (-B) is performed as

C-A) + C-B) = (2 n - A) + {2 n- B)= 2 n + (2 n -(A + B) )

Thus, an overflow 2 n results and the correct answer, a negative

number, is in two's complement form.

Because of the described advantages, two's complement

representation of negative numbers will be used in the integrator

registers of the path generator. Since the feedback elements in

the following servomechanisms are usually coded disks with

representations that can be considered only in the positive range,

the final outputs need only be positive numbers. Therefore, no

conversion problems exist at the output. Input data, if negative,

mu_t be converted to a two's complement representation.

Arithmetic Unit

The arithmetic unit of an integrator must perform an

accumulative summation, i.e. upon command the contents of the

integrand register must be added to those of the integral register,

the results appearing in the integral register. Since, through use
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of two's complement representations, all operations have been

reduced to binary addition, a simple ripple-carry binary adder as

shown in Fig. 2.7 suffices. A parallel adder has been chosen to

allow faster operation of the integrators. The logic symbols ".'.sed

here and in later diagrams are standard and are defined in the

List of Symbols.

The adder is based upon transition coupled flip-flops, i.e.

flip-flops which change state upon receipt of a level change in a

given direction at a "T" input. The method of operation is as

follows.

Upon command, the l's of the integrand register are

simultaneously gated into the "T" inputs of corresponding flip-

flops in the integral register. Each flip-flop which receives an

input changes state. A 1 to 0 transition means that a carry to the

next stage is generated. Any carry is delayed, however, before

it is gated to the "T" input of the next stage flip-flop. This delay

prevents nearly simultzneous arrival of inputs to a flip-flop and

insure s reliable operation.

As can be seen, this type of adder operates upon carrys

asynchronously. A finite settling time is needed before all

transitions are completed and the correct answer appears in the

integral register.
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To allow for the proper accumulation to take place, an

integrator unit of the path generator has an integral register

which is much longer than the integrand register. If the sign of

the contents of the integrand register is positive, no special

arrangement is needed to match its length with that of the integral

register. If the sign of the integrand register is negative,

however, in order to present the correct two's complement to

the integral register, the length must be extended through use of

the sign bit as shown in Fig. Z. 7.

Special Feature s

In the examples of path generation in this chapter, x has

always been the independent variable and y the dependent

variable. In this, the normal mode of operation, the increment of

the independent variable is added to the x output register and the

first derivative register is added to the y output register. If this

mode were fixed, however, an extremely large first derivative

register would be required to generate all possible path slopes.

To avoid this, so that a generator can be constructed using a

modest amount of equipment, the decision is made that for a slope

greater than 1 the roles of x and y will be interchanged. Thus,

the maximum value that need be contained in the first derivative
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register is 1. Special considerations must be taken in the input

data preparation as a result of this restriction.

The implementation of the path generator incorporating

the interchange feature is shown in Fig. 2.8. Here, the address

of the independent variable is supplied by the input data source.

This address controls the gating to the x and y registers and

governs which receives inputs from the first derivative register

and which receives the independent variable increment.

Under certain conditions, it may be desired to change the

basic scale of the independent variable or to change the inter-

polation direction along this axis. Scaling changes are achieved

by changing the weight of the added independent variable increment.

Positive direction is achieved by adding the increment; negative

direction, by adding the twols c0Ynplement of the increment. The

increment weighting and direction are also specified by the input

data source.

Use of the initial condition, variable interchange, scaling,

and interpolation direction features allows closed contours to be

generated. An example of this is presented in Chapter IV.

Since paper tape will be used as the data source in the

final constructed system, it is shown as such in Fig. 2.8.

Control of the tape reader and integrators is represented only in
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block diagram form here. Considerations of actual control

circuit design will be postponed until the integrator registers

are scaled.



CHAPTER III

SCALING, ERROR ANALYSIS, AND

FINAL DESIGN OF THE PATH GENERATOR

In order to complete the design of the path generator, the

weights of the most significant and least significant bits of each

register and the normal weight of the increment of the independent

variable must be determined. The basic interval between

corrections must also be assigned. All scaling will be performed

in units. The physical weighting of a unit is assigned by the

following se rvome chanism s.

The weights of the most significant bits of the registers

can be determined using equipment limitations and restrictions on

the allowable functions which can be generated. An error

analysis of the connected digital integrators mu_t be made in order

to determine the remaining weights.

First, for convenience, let the basic interpolation interval

along the independent variable axis be Z 3 = 8 units. Any other

power of 2 could just as conveniently be chosen as the interval.

A choice of other than a power of Z as an interval introduces

considerable hardware complications.

°44-
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Determination of Weights of Most Significant Bits

The weight of the most significant bit of an output function

Z 6register is chosen as units to correspond with the most signifi-

cant bit of the feedback encoder disks used in the following

se rvome chani sm s.

The limit has been set on the first derivative that its

absolute value be < 1. To correspond with this restriction, the

most significant bit of the first derivative register is assigned

a weight of 2 °. This weighting actually allows a maximum slope

bounded by 7 units when contributions from the remaining bits are

considered. Thus, for slight trespasses on the limit of a slope

of 1 no switching of the x and y roles is necessary to continue

generation of the function.

Using the limit set on the first derivative, let the limit be

set on the second derivative in the following way. Consider that

the second derivative is at its maximum value throughout an

interval. This maximum value should be large enough to cause

the first derivative to change from a maximum positive value to a

maximum negative value or vice versa. That is,

or

8

f I Y"(x)Ima x

0

dx=2

2 -2
I y"(x)Imax = _ = 7. (3-1)
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This is an absolute upper bound and can be approached using a

-3
register whose most significant bit has a weighting of 2

To set the upper bound on the third derivative, consider

that it is at its maximum value throughout an interval. This

should be large enough to cause the second derivative to change

through half the possible range. That is,

8

f dx = Z_ZI Y'"(x) Ima x

0

or,

= 2 -5I y'"(x) Imax (3-z)

This again is an absolute upper bound and can be approximated

using a register whose most significant bit has a weight of 2 -6

All upper bounds have n_v been set on the integrator

registers. These bounds limit the class of functions that can be

produced by the path generator. However, since the bounds have

been set quite conservatively, resulting problems should be at a

minimum. An error analysis of the connected integrators must

now be made in order to determine the remaining unknown

weighting s.
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]Error Analysis of Connected Digital Integrators

2, 5, 12
Integration by digital means is not an exact process.

Truncation error is introduced by the finite summation approxi-

mation of the continuous -'--_ ...... -"--- x n= p_ysL_axza,_gr,_L_un operation. _,t_ __ -.__i

restriction of :_'-:* -^ _,,s_.,o means that ÷_'° _....+ _,._..+4+.

must be rounded off or quantized. Thus, a roundoff error is

introduced in the output. In the follo_ving, expressions for the

truncation and roundoff errors in the output of a single digital

integrator are first derived. These expressions are then used to

analyze the three connected integrators of the path generator. In

this analysis only the error in the output, or dependent, variable

will be of concern. The independent variable, in this analysis

x, can be maintained exactly by accumulating command increment

pulse s.

A single integrator is shown schematically in Fig. 3.1.

The quantity f(x) is inserted in the integrand register. The

ff(x) dx with the appropriate initial conditions andquantity

limits is desired in the integral register. What is actually

achieved is the summation 2; f(xi) _x, again with the appropriate
i

initial conditions and limits. The difference between the integral

and the rectangular approximation represents the truncation

error, Et(NAx ).
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x 1

Et(NAx) - f

x o

N-1

f(x) dx- i_O f(xi) hx (3-3)

where Ax =
X_ m X_

1 U

N
, N is the number of rectangular segments

used in the approximation, and x. = x 0 + iAx. Expressing the1

integral as the sum of integrals and moving the summation sign

give s
x.+Ax

N-I fEt(NAx) = _ [
i=O x.

1

f(x)dx- f(xi)_x_ (3-4)

Sor f f(x)_ = F(x),

N-I

Et(NAx ) - r. [ F(x i + Ax)- F(xi)- f(xi) Ax] (3-5)
i=0

The Taylor's series expansion of F(x i + Ax) is

i
s(xi+ _x)= r(xi)+ _,(xi)_x +

+ _ax)(ax)z

Z !
(3-6)

where the last term is Lagrange's form of the remainder which

results when the series is truncated after the term containing the

first derivative and 0< _ < 1. The parameter _ must be

determined for each diffe rent function.
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Substituting Eq. 3-6 into Eq. 3-5 and recalling that

F'(x) = f(x), _"(x) = f'(x), and x. : x 0 + lax yields1

or,

N- 1 f'(x 0

Et(NAx ) =
i=0

+ + #

Z!

Et(NAx)_ (Ax)2 N-1Z 2_ f'(x 0 + _Ax + _ Ax) (3-7)
i=0

Evaluation of this awaits knowledge of the nature of f'(x).

If a number cannot be represented exactly within the

finite register length of the integrand register, it must be

rounded off. Due to the nature of the operation of the integrator,

this is not a rounding off of the least significant representable bit

to the nearest value but instead is a neglect of all bits less than

the least significant bit. Thus the upper bound on the roundoff

error in the integrand register is the weight of its least

significant bit. The use of a longer register so that the bits that

are dropped have a very small weighting reduces this error.

However, since the contents of the integrand register are used

many times, even slight errors accumulate and can have a

significant effect on the output.
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Without dealing with specific functions, the actual amount

of roundoff error cannot be determined. An upper limit can be

found, however. Let a weighting 6 be assigned to the least

significant bit of the integrand register. The error in the

integrand will be less than 6 at each step. Then E (NAx), the
r

value of the roundoff error in the integral register after N steps,

is

or,

N-I

Er(Zkx ) < _E 6 Ax
i=0

Er(NAx ) < N6 Ax (3-8)

The total output error, E, is the sum of the truncation error E
t

and the roundoff error E , or
r

Then,

N- 1
E(N ) < [ z

i=0

E = E t + Er (3-9)

f'(x 0 + iAx + _g_x)] + N6 Ax (3-10)

This is the output error for only one integrator unit. If

the output of one integrator serves as the input of another, then

the error of the first integrator is reflected in the output of the

second. Thus in the connected integrators of the path generator,

errors can be compounded. This compounding of errors will now
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be investigated using as a model the representation of the path

generator shown in Fig. 3.2. Here, and throughout the remaining

discussion on scaling, Zkx represents the normal command incre-

ment of the independent variable.

Any error in the output of the third integrator unit, E_, is

reflected through the two other units. Thus, any slight error here

can be compounded into a serious error in the output function. It

is important, therefore, that the error E 3 be kept as small as

possible. To do this, let the output roundoff error, Er3, be zero.

This means that any initial conditions or corrections to the third

derivative register must be entered exactly.

As was shown in Eq. 2-30, any initial condition to the third

derivative register is a third difference divided by h 3, where h

2-3has already been chosen as units. Let the least significant

bit of the third derivative register be given a weighting of 2 -12

units. Then the third difference must be specified exactly by a

binary number whose least significant bit has a weighting of

2 -12 -3

Z- 9 = 2 units. This means that the restriction must be placed

that the dependent variable of any given path point must be

specified exactly by a binary humbert whose least significant

-3
bit: represents 2 units. As a result of this restriction on the
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dependent variable, any correction to the third derivative

register which is a fourth difference divided by h 3 is also

-3
specified exactly to 2. units.

-12
T_e ¢_,,=p n¢ 2 ,,,_ =_ +s .... _+_,_ of +_o least

significant bit of the third derivative register has been chosen so

that this register is eight bits long, seven magnitude bits and a

sign bit. Inputs from one line of eight level paper tape can thus

be easily made.

Since roundoff error has been eliminated, the output error

E 3, which is the error in the second derivative, is then due only

to the process of digital integration. Eq. 3-7 can be used to find

this error. Notice that the third derivative is a constant for any

third order polynomial being generated. Thus, the

d
f3'(x0 + lax+ _Ax) to be used inEq. 3-7 is_(y",(x) )l x +iax+ Ax

O

equal s the derivative of a constant and is therefore zero. The

digital integration error is then also zero. Thus, the total output

error is zero, i.e.

E3(Nax )= 0 (3o11)

The output error of the second integrator unit, which becomes the

error in the first derivative, can now be found using Eq. 3-10.
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Thus,

Ez(NAx) 7< [ (Ax) 2 N-12 _' f2'(Xo
i=O

+ lax+ _ ax)] + N6 Z_ (3-1Z)

where 62 is the weight of the least significant bit of the second

derivative register which is used as an output to the first deriva_

tive register. For the second integrator unit, f2(x) = K3x where

K 3 is the value of the third derivative and is a constant. Then,

fz'(Xo+ i_ + _x) = K3 (3-13)

Substituting this into Eq. 3-12 gives

Ez(NZix) < [ _ N-12 Z K3] + N62Ax (3-14)
i=0

or,

2

E z (NZ_x) < (Z_x)Z NK3 + N5 2Ax (3-15)

The first integrator unit operates upon this error and

introduces error of its own to give an error in the output

dependent variable of

EI(NZix) < [ (Ax) Z N-1
2 ]E fl '(x0 + ilix +_ _x)] + N61Zix

i=0
N-1

+ Z E z (i) _x
i=0
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where, 6 1 is the weight of the least significant bit of the first

derivative register which is used as the output to a function

register. Here

-!f'(x0 + iAx + pax) = _z + K3(x0 + iAx + _) (3-_7)

where K Z __s the initial value of the second!_erivative.
2

1
third order polynomial _ =_. Then_

For a

EI(NAx) <i 2 23 [K 2 + K3(x 0 + lAx + )]
i=0

+ N61Ax

N-I (t=)z
+ 23 [ 2 iK3 + i62Ax] Ax

i=0
(3-18)

Evaluating the summations gives

E zINKz1(N_) < --2--
N 2 - NZ_x

+ NK3( x0 + -3--)+ 2 K3Ax]+ N6 lAX

+
N 2

N Z - N (_x) 3 + - N 6 (Ax) 2
2 K3 2 2 2 (3-19)

Collecting terms then gives the final error of the output of the

first integrator unit as

K 3 Ax 6 2

EI(NZ_x ) < (Ax) 2 N z (. _" +_-) (3-20)

62Ax K3Ax x 0 (Zxx)ZK 3 KZAX

+ Z_xN (6 1 2 +=' 2 3 + _)
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This then is the error in the generated function. Setting a limit

on this will allow 6 1' 52' and Ax to be determined.

Determination of Weights of Least Significant Bits

In order for Eq. 3-20 to be used in determining the

remaining weights, a maximum allowable error limit must be set

on the generated function. Let this limit be one unit for a third

order polynomial generated over the maximum range of the

independent variable. If a different limit is desired, similar

procedures can be followed to achieve proper scaling.

First, let the error contributed by a part of Eq. 3-20 be

1

less than or equal to_ unit, i.e. let

6 z (z )2 Nz
T +6

1
l_xN <_ $ (3-21)

7
For generation across the maximum interval, NAx = 2 , or

62(27) 2 (27) < 1T +61 -$

Eq. 3-22 is satisfied if

6 = Z -9
1

and

(3-23)

-15

5 2 =2 (3-24)
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In order to stay well within the specified error limit,

remaining portion of Eq. 3-20 be

K3Z_x K3Z_x x0 6 zZ_x

(_x) z Nz (--=f--) + AxE ( 2 Z 3

let the

Kz£x 1

+ _) _<_ (3-Z5)

As will be seen, the two underlined terms are very small corn-

pared to the remaining terms in the last bracket and will be

neglected. Regrouping the remaining terms of Eq. 3-25 then

give s

K3(Ax) z N KZ(ix)Z N 1

Z (AxN + x0) + Z < "_ (3-Z6)

The bracketed term here has a maximum value of 27 the

maximum range of the independent variable. Once K Z knd K 3 are

determined, Eq. 3-26 can be solved for Ax.

The maximum values of K 2 and K 3 can be found considering

that the slope of the generated path is bounded by an absolute value

of 1. Thus, the maximum value of any change in slope is 2. This

slope change is produced by the output of the second integrator
Z

K 3 x

unit, Z + Kzx . So to determine the maximum values, let

Z

K 3 x

z + KzX_<z (3-zv)
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Since x has a maximum value of 27,

K 3 Z
T (Z7) + KZ (27)--<2 (3-?.8)

= 0, the maximum value of K 3 which solves this equation is

K 3 I = Z-14 (3-29)
max

If K 3 = 0, the maximum value of K 2 which satisfies Eq. 3-28 is

K z I = z-6 (3-30)
max

Now using these values for K 2 and K3, Eq. 3_'-Z6becomes

z-14 z-6 !
--_(Z 7) Z_x(27)+--_ Ax(Z7)< 4 (3-31)

or,

Z_x + Ax< Z-2
T -- (3-32)

or considering only a power of 2,

-3
Ax < 2 (3-33)

-4
Let Ax be 2 , then, since this satisfies Eq.

weights have now been determined.

3-33. All register

Final De sign

The weightings that have been determined and the scaling

rule developed in Chapter II are used to obtain the final block
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diagram for the path generator. See Fig. 3.3. The numbers

included in the register bits represent the weighting of that bit in

a power of 2. Notice that the registers of the two lower integra-

tor unit.q are lined up so that the welaht nf an intp.ara.1 r_cri_t_r blf

is equal to the weight of the corresponding integrand register bit

times the weight of the independent variable increment, Z "4.

This same scaling rule is followed in the top integrator unit

through use of internal circuitry in the arithmetic unit and gating

block. The necessity of showing the interchange feature prevents

the physical lining up of the block diagram representations of

the output registers with the first derivative register. During

operation, then, the 20 bit of the first derivative register is

added to the 2 -4 bit of the dependent variable output register, etc.

Under normal scaling, the independent variable increment is

-4
added to the 2 bit of the independent variable register. Recall

that input information determines whether x or y is the inde-

pendent va riable.

In actual implementation, the registers will consist of

flip-flops. Then, the connecting arithmetic units, shown here

only as blocks, will be of the same type shown in Fig. 2.7.

Various control lines are shown in Fig. 3.3. For proper

functioning of the path generator, these must be operated so that
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the control flow diagram of Fig. 3.4 is followed, This flow

diagram implies the use of _vo gated counters, one to govern the

cyclic additions of the integrators (Add Control), and one to

provide tape reading control, setting of the gating, and control of

inserting initial conditions or corrections (Input Control). For

this reason, the control is represented in Fig. 3.3 by two blocks

with the appropriate control lines emanating from the blocks.

The actual implementation of the path generator of

Fig. 3.3 is described in Appendix II. The outputs of the path

generator provide inputs to a two-dimensional plotter. This

plotter, whose construction is described in Appendix III,

represents the system to be controlled. Graphical output records

from the combined systems are shown in the next chapter.
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CHAPTER I V

EXPERI MENTAL RESULTS

The path generator has been constructed using the Digital

Synthesizer of the Case Digital Systems Laboratory. This

Synthe size r feature s modular logic units which are connected

using removable wired program boards.

Inputs to the generator are provided by a paper tape block

reader. Each block of input tape contains the information to

allow path generation over one interval of the independent

variable. The use of a block reader eliminates the need for

intermediate internal storage and simplifies the gating in of input

info rrnati0n.

The outputs of the generator are used to control a two-

dimensional plotting table. Each axis of the table contains an

absolute digital servo drive. The plotter table produces a

graphical record of the generated path.

A photograph of the combined elements is shown in Fig. 4.1.

The Synthesizer is shown in the left background, the plotter table

in the center, and the servo drive electronics and tape block

reader at the right.

-64-
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FIGURE 4.1 PHOTOGRAPH OF PATH 
CONTROL SYSTEM 
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It was pointed out in Chapter II that the path generator

normally produces a single valued continuous path. However,

modifications introduced by instructions on the input tape allow the

use of the basic manner of operation to produce other types of

paths. Thus, the clearing and setting in of new initial conditions

in the derivative registers allows the generation of sharply dis-

continuous paths. Changing the direction of interpolation along

the independent variable axis and[or the assignment of x or y as

the independent variable allows various types of closed contours

to be produced. The restriction on the magnitude of the first

derivative means that a combination of these modifications must

be used to generate certain paths.

To illustrate these features, two examples of path generation

and the required data preparation will now be presented. The first

will discuss a closed contour composed of various types of

segments. The second will be concerned with the generation of a

spiral.

Example 1

The path of this example is composed of various types of

segments. Each segment is used to demonstrate a different type

of path which can be generated. The path record produced by the
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plotter table is shown in Fig. 4.2 along with the points through

which the path should pass.

The section between points 1 and 9 demonstrates the

possibility of linear interpolation in the generator for a slope

magnitude less than 1 with respect to the x axis. The segment

between points 9 and 16 shows the normal third order interpolation

feature where +x is the independent variable. The section between

points 16 and 23 presents straight line generation along the y axis.

The portion between points 23 and 28 shows third order interpola_

tion with +y as the independent variable. The section between

points Z8 and 39 shows straight line generation along the x axis.

The last segment, between points 39 and 41, demonstrates linear

interpolation for a slope magnitude greater than 1 with respect to

the x axis. Further discussion of the path record will be given

after the input data preparation is presented.

The coordinates of the path points along with the appropriate

differences are tabulated in Fig. 4.3. The path points and

differences are grouped according to path segments. For each

path segment, the sign and address of the independent variable is

given to the left of the grouping. The differences are then taken

of the other variable. Using the data contained here, the
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information to be entered on the control tape of the generator can

be found.

Each tape block consists of seven lines. The information is

entered on to the tape according to the format shDwn in Fig. 4.4.

Thus, the first three lines provide information for the first

derivative register. The next two contain information for the

second derivative register.

third de rivative re giste r.

The sixth line provide s inputs to the

The seventh line gives gating control

information, a stop instruction, and a preliminary clearing

command when initial conditions instead of corrections are to be

added to the derivative registers. The gating control information

consists of the address and sign of the independent variable.

Normal operation is with +x as the independent variable. Any

changes to this must be entered. Holes are punched in the tape

for 1 data bits and for commands. A 0 or the absence of a

particular command or gating signal is repre sented by blank tape.

Initial conditions to the derivative registers are entered

from tape at the start of the path and at the beginning of each new

path segment. These are calculated according to Eqs. 2-28, 2-29

and 2=30. Examples of initial condition calculations and conver=

sion to the proper tape coding are given in Appendix IV. Fourth

difference corrections are entered in the first and third derivative
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registers at the other interval points. Initial conditions for the x

and y registers at the start of the path are not obtained from the

input tape but must be set in manually.

Since the derivative register initial conditions are calculated

so that the path passes through the first four points of a segment,

no correction is made at the second point of each new segment.

Also since the final portion of each segment is to be the third order

polynomial which passes through the last four points, no correction

is made at the second to last point of each segment. For segments

shorter than three intervals, i.e. segments which pass through

less than four path points, lower than third order interpolation

must be used. This condition is demonstrated better in Example Z.

Tables which allow the fourth difference corrections to be

entered in the proper coding on the control tape are given in

Appendix IV. Tables A. 4-I and A. 4-2 give entries to the three

lines of tape which provide inputs to the first derivative register.

1 A 4 (dependentThese tables give the proper coding for -_h-

variable). Kemember that a straight binary coding is used for

positive numbers and a two's complement coding is used for

negative numbers. The interval h was chosen as 2 3 units. Table

1 A 4 (dependent variable) which is
A. 4-3 gives the coding for_

the correction term to the third derivative register. Recall that
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no corrections are needed for the second derivative register.

Initial conditions must be introduced there, however, at the start

of each new path segment.

Using the tabulated fourth differences, the coding tables,

and the calculated initial conditions for each new interval, the

information in the control tape which will allow the generation of

the closed contour is then given in Fig. 4.5. Each tape block

presents information which allows generation of the path over the

next interval.

Returning to a discussion of Fig. 4. Z, notice that due to the

quantization effects of both the generated data and the plotting

table and error in the path generator, the generated path does not

always pass through the desired points exactly. However, there

is never more than one unit error in any coordinate direction.

The path does not close exactly, a one unit error remaining in

the y direction at the end of the contour. This is due mainly to

the quantization effect of the output of the generator. The final

error determined by observing the total contents of the y output

register is approximately 1/4 unit.

Example Z

The only feature not demonstrated by Example 1 is the use

of variable interchange when the magnitude of the path slope
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changes through 1. Actually, the selection of interchange points

can be made for slope magnitude values anywhere between 1/2

and 2 since the upper bound on the capacity of the first derivative

register is Z. Thus the selection of interchange points is not too

critical.

The interchange feature is now demonstrated through genera-

tion of a spiral. The output record along with the input path

points is shown in Fig. 4.6. The independent variable inter-

change is made at points 14, 20, 23, 26 and 28. For the segments

between points 1 and 14, 20 and 23, and 26 and 28, x is the

independent variable. For the first and third of these segments,

a positive interpolation directions is used. For the second

section, interpolation takes place in the negative direction. For

the remaining segments, y is the independent variable. A

positive interpolation direction is used between points 14 and 20,

and 28 and 30. A negative interpolation direction is used

between points Z3 and 26.

The coordinates of the path points along with the appro-

priate differences are tabulated in Fig. 4.7. For each path

segment, the sign and address of the independent variable is

again given to the left of the segment. The differences of the
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other variable are then taken. The information to be entered in

each tape block can be found using this data.

At each interchange point new initial conditions are intro-

duced. Example of initial condition calculations are given in

Appendix IV. The coding tables of Appendix IV are used in the

same manner discussed in Example 1 to convert the fourth

differences corrections to the proper tape coding.

The control tape information to allow generation of the

spiral is then given as shown in Fig. 4.8. Again, no corrections

are needed at the second point of a path segment or the next to

last point of a segment. Notice that the last two segments only

pass through three path points. Thus only second order interpo-

lation is available here.

As in the previous example, due to quantization effects and

error in the generator, the generated path of Fig. 4.6 does not

pass through the desired points exactly. Notice, however, that

there is never more than one unit error in a coordinate direction.

Despite the many interchanges between x and y as the independent

variable which mulst be made to produce this path, the generated

path does pass through many of the path points including the final

point with no error. This is a good indication of the accuracy of

the path generator.
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In these examples, no attempt was made to achieve a high

plotting speed, the control clock frequency being only 150 cps.

The plotting speed was limited by the dynamics of the plotting

table. A separate test on the path generator alone indicated a

reliable operation up to a control clock frequency of 1.6 KC/sec.

The basic interpolation interval for these examples was

fixed at eight units. No provision for independent variable scale

changing was incorporated in the final implementation due to a

lack of sufficient logic in the Digital Synthesizer.

The quantization level of the plotting table has purposely

been chosen quite course so that the accuracy of the path

generator can be seen. A smaller quanta size would not allow

the generator accuracy to be observed as readily.

Discussion of Design Features

The basic interpolation interval h was set for convenience

at a nominal value of 8 units. Depending on size and speed

requirements, it may be desirable to increase this interval.

Following the design procedures outlined in this research, a

design for a different basic interval could easily be accomplished.

No attempt has been made here to achieve constant path

velocity. A constant component velocity, that of the independent

variable, is maintained however. Considering the slope
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limitations on generated paths, this means that path velocity is

controlled within 41 percent. If more accurate path velocity

control is desired, first difference information can be used to

determine the average slope_,over an interval. Using this as an

input to a binary rate multiplier: the control clock rate could be

regulated to give path velocity control with a maximum variation

of Z0 percent. For slowly changing paths, the velocity variation

would be much less. If better velocity control is desired, more

Z
extensive and expensive equipment is needed. Control of path

velocity to maintain other parameters such as a cutting tool

Z9
temperature may be desired°

ment is needed.

Again, rather extensive equip-

The integrator units in the path generator of this research

have been implemented using flip-flop registers. As the registers

become longer to accomodate greater capacity and accuracy, the

use of drum storage or delay line storage shows greater economic

4, 10
a dvanta ge s o

The outputs of the path generator have been interpreted in a

x-y Cartesian coordinate system° However, this is not a limita-

tion. The outputs could also be interpreted as polar coordinates,

i.e. the independent variable output could be interpreted as a polar
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angle and the dependent variable output as a radius vector.

Continuous contours in which the origin of the coordinate system

1B,14
is inside the contour could then be generated quite easily.

The path generator described here has produced inputs for

digital servomechanisms, the combination of the generator and

the servos serving as a path control system. However, the path

generator is by no means limited to such an application. It can

also serve to provide information for computing or other control

applications.

Summary

The general features of path control systems and the

advantages of absolute digital data systems were discussed. A

two-dimensional absolute digital data path generator which

produces interpolated path control information through discrete

input path points was designed and constructed. The generator

provided inputs to a digital plotting table, the combination of the

generator and the plotter representing a path control system.

Details of input data preparation for the system in order to gener-

ate two desired paths were presented. The path records produced

by the system were given. Examination of these records showed

that the desired paths were generated within the designed system

error limits.



APPENDIX I

DERIVATION OF THIRD ORDER INTERPOLATION FORMULA

it is desired to find the equation of the central section of

the third order polynomial which passes through the four successive

points shown in Fig. A. 1.1. These points are spaced at equal

increments, h, of x, the argument. Coefficients of the polynomial

are desired in the form of functions of the differences of the values

of the polynomial at the points. These differences are defined in

Table Z. 1.

To start, let y(x) be the polynomial. It may be written in

the form

y(x) = a 0 + al(x - Xo) + az(x - Xo)(X - Xl) (A. 1-1)

+ a3(x - x0)(x - Xl)(X-.x z)

By successively substituting the values of the coordinates of the

four points into this equation, the coefficients a 0, al, az_ and a 3

can be evaluated.

At x = x 0, Y(x0) = Y0 = a0 (A. I-Z)

-83-
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At x = xl, Y(x1) = Y1 = Y0 + al(Xl " x0)

or,
YI "Yo AVo (A.I-3)

al = h =_

AY o

At _ =_Z' Y(_Z) YZ = Y0 +--fi-(_Z"_0) + %(_Z " _0)(xz-xl)

AYO (Zhz,)
= Y0 +--g-(Zh)+ %

or, a 2

A Z
YZ " 2Yl + Y0 Y0

Zh Z Zh Z

(A. I-4)

'Atx =x 3, y(x 3) = Y3 = Y0 +

Yl - Y0

h (_3-_0)

Y2 " 2Yl + Y0
4 '" (x 3 - x O)(x 3 " x 1)

2h 2

+ a3(x 3 - XO)(X 3 - xl)(x 3 - x2)

Yl - Yo Yz - zYl + Yo
= Y0 + "(3h) +

h Zh 2

(3h) (2h)

+ _3(3h)(zh)(_)
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or, a 3

Y3 " 3Yz + 3Yl " YO _3Yo

6h 3 = 6h 3

(A. 1-5)

Using the determined values of the a's,

Az

y(x)= Yo _Yo (x _Y°
+ -5- x0) + Zhz

(_"_0)C_"_1)

A3y0 (x- x0)(x- Xl)(X- x Z)

+ 6h----_

(A.1-_)

This is the equation of the polynomial through the four points.

Now consider only the central section, i.e. let x = x I + ah

where 0 < a < I.

Then, y(x I

AY 0

+ ah) = Yo + _ (Xl + a.h- Xo)

AZy 0

+- (xI+ ,,,h- %)(xI+ ah - x1)
Zh z

_3y 0
+--

6h 3
(xI + =h - %)(_I + a h - _1)(_1 + _ h - _z)

Simplifying,

y(xI + ,_h): Yo +Ay o(_ + I)+_

AZy 0
(a + i)(. )

z
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A3y0

6 ((I+ 1)(a.)(e, - 1)

AZy 0

= Y0 + AY0 + " "Y0 + -T-- (_ + I)((, )

A3y 0 .

+_(,a + 1)(a)(a - I)

= Yl + a(Yl - Y0 ) + a(YZ - 2Yl + Y0 )

Finally,

A 2 A 3
YO YO

+--_-- (a)(a - 1)+_ (a + 1)((l)(a - 1)

A3y o

y(x I + ah) = Yl + aAYl + _ ((_)(a - 1)

A3yo

6 (a + 1)(a)(a - 1)

(A. I-7)

This is the same as the Newton-Gauss central difference inter-

polation formula when fourth and higher order differences are

17, 24, 30
zero, as they would be for a third order polynomial.



APPENDIX II

DETAI LED DESCRI PTI ON OF PATH GENERATOR

The purpose of this section is to describe the design and

construction details of the digital path generation unit which has

been shown in block diagram form in Fig. 3.3. The main areas

of discussion will be the path generator, the control logic, and the

input tape equipment.

Path Generator

The path generation unit was constructed using the Digital

Synthesizer of the Case Digital Systems Laboratory. See the

photograph of Fig, A.Z. 1. The Synthesizer contains transistorized

digital logic modules mounted on racks inside the main cabinet

which is shown at the left. The input and output connections of

the modules are brought out to the receiver pictured at the lower

right. Power supply wiring is contained internally. A removable

board which fits into the receiver unit contains the desired

connecting plug-in wiring. A small receiver board which contains

facilities for connecting in auxilliary logic modules and also

contains the indicator light connections is shown on the extreme

right. Jacks for providing external inputs and outputs to the

-88-
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Synthesizer along with indicator lights and a pulse generator are

mounted in the main cabinet.

The use of removable wired program boards makes the

Synthesizer a valuable research tool. Merely by switching

boards the connection of the logic modules needed for one project

can be changed to the connection needed for anbther one.

The logic elements contained in the Synthesizer were manu-

factured by Wang Laboratories, Inc. They are designated as

Series 200 LOGIBLOC Transistorized Module Building Blocks.

The maximum operating frequency of these elements is Z00 KC.

The schematic diagrams for the circuits used in constructing the

path generation unit are given in Figs. A. 2.6 and A. Z. 7.

The connection of the logic elements of the Synthesizer used

to construct the path generator is shown in Fig. A. 2. Z. The

binary weightings of the Flip-flops of the various registers are

labeled. The numbered points are connected to the corresponding

points of the control logic diagram of Fig. A.Z. 3,

The registers are connected as arithmetic units of the same

type as shown in Fig. 2.7. Here gated pulse generators are used

as the delay elements. When the level input is at 0v, the gated

pulse generator produces a negative pulse output upon a 1 to 0

transition of the input flip-flop. This pulse is O1% gated to the T
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input_ 0f the next stage flip-flop. Since a flip-flop changes state

upon receiving a positive going pulse or level change, the trailing

edge of the pulse from the gated pulse generator provides the

trigger. Thus there is a delay of the width of this pulse or about

4.7 _ sec.

If the level input to a gated pulse generator is -12v, all

outputs are prevented. Thus the level input can be used for carry

inhibiting. This feature is used when it is desired to clear the

de rivative re giste r s.

Most of the flip-flops receive a T input from a cascaded

NOR 3 gate and NOR 1 gate. The combination of the two NOR

gates forms an OR gate. Instead bf cascading two NOR gates to

form an OR gate at the T input of other flip-flops, two additional

GATES are connected in as shown. This, in effect, gives a

double T input and is the same as an O1% gate.

Additional inputs to the OR gates come from NOR Z gates.

For these gates, -12v is normally considered a logical 1 and 0v

a logical 0. By reversing this nomenclature, the NOR gate

becomes a NAND gate. Use of the trailing edge of the output of

9
the NAND gate allows it to be interpreted as an AND gate. So the

NOK Z gates in effect become AND gates.
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There is a row of NOR 2 gates below the x register and

also a row below the y register which allows the contents of the

first derivative register to be added in. Which of the output

registers receives the contents of the first derivative register is

determined by the control logic which activates the proper gating

row.

A row of NOR Z gates below the first derivative register is

used to add in the second derivative register. A row below the

second derivative register allows the third derivative register to

be added in. Also, below each derivative register is a row of

NOR gates which are used to add in contents from tape. The

various add lines are activated by the control logic to allow the

control flow diagram of Fig. 3.4 to be followed.

The independent variable scaling feature mentioned in

Chapters II and IH has not been included in the final implementa-

tion of the path generator due to a lack of sufficient logical

elements in the Digital Synthesizer. Thus the magnitude of the

_4
independent variable increment is fixed at 2 units. A positive

increment is then added at the 2 -4 stage of the x and y register.

A negative increment is added in two's complement form. The

address and sign of the independent variable supplied by the input

tape allows the control logic to activate the proper gating lineo
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Variable scaling could be achieved by reading the desired

value of the independent variable increment to be used over an

interpolation interval into a storage register. The contents of

this register could then be added to the independent variable

register for each independent variable increment and command.

The derivative registers are cleared by supplying a positive

going pulse to the GATES connected to the reset side of each of

the flip-flops. Any carrys generated by this action are not

propogated through the delay elements since previous to this the

level input to each gated-pulse generator is changed from 0 to

-IZv. After the clearing has taken place, the level input is

returned to 0v.

The first seven stages of the x and y registers provide the

outputs to the plotting table. The outputs are taken off alternate

sides of the flip=flops in order to a11ow their direct use as inputs

to a comparator unit. This is explained in detail in Appendix_,III_. :,

Notice that additional non-logical elements are included in

the implementation of the path generator to compensate for

loading effects. Also notice the way in which the sign bit is used

to extend the register length so that the proper twofs complement

representation of negative numbers is presented to the next

re giste r.
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Control Logic

The control logic of Fig. A. 2.3 implements the control flow

diagram of Fig. 3.4. This logic consists basicly of two gated

l_f'llln'l'F_l-_ i i-_n_ t-r_ _'t.,_._r_rl,s ,_r_-,'l-_-01 ,_" _-1_ -;_.,....4-_ 4-.-. +1_ ...... d. ....

one to provide the cyclic addition commands to the integrators

units. A cycle control flip=flop governs which counter receives

pulses from the pulse generator. At the start of each path, all the

counter flip-flops are set to 0, the cycle control flip-flop is set to

allow pulses to pass on to the input control counter and the stop

control flip-flop is set to allow passage of pulses.

This initializing is done by open circuiting the emitter of the

transistor of the appropriate side of a flip-flop using the reset

button of the Synthesizer. The initialconditions to the x and y

registers are also set in at this time by the same means.

By using trailing edge triggering and the nomenclature that 0

volts represents a logical 1 and -12 volts represents a logical 0,

the NOR gates connected to the counters function as AND gates? An

increasing level change output is then produced by the gate as a

counter leaves a particular count. Thus, gates a, b, c and d

produce outputs as the count in the input control counter leaves

I, 3, 5 and 7 respectively. An output is produced by gates e, f and
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g as the add control counter leaves the counts 1 modulo 8, 3 modulo

8, and 5 modulo 8 respectively.

The output of gate a resets the carry control flip-flop to

prevent any propogation oz-_carrys .....oerween stages of the derivative

_+_ r+ also sets the _ " _ _*"_s ....... _.... _e_e,_de_ variable address control

flip-flop to x and the independent variable sign control flip=flop to

plus. Gate b provides a clear signal to the derivative registers if

the clear hole on the input tape is punched. Otherwise no clear

signal is produced.

The output of gate c sets the carry control flip-flop to again

allow propogation of carrys in the derivative registers. Also the

sign, address, and stop control inputs from the input tape are

gated in. Gate d provides the signal to add inputs from the tape to

the derivative reglsters.

The 1 to 0 transition of the last flip-flop of the input control

counter resets the cycle control flip-flop to route pulses to the add

control counter.

The output of gate e is used to add the increment of the

independent variable to the independent variable register

and to add the first derivative register to the dependent variable

register. The address control flip=flop determines which is the

independent variable register. The sign control flip-flop gives
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the sign of the independent variable increment. These two flip-

flops then control the necessary gating.

Gatef provides the signal to add the contents of the second

gate _ causes the addition of the third derivative register to the

second derivative register.

For the add control counter, those stages beyond the first

three serve as in iteration counter for the add cycle. Since 2 4 add

cycles must take place to cause the independent variable to

increase one unit, and Z 3 units are needed for an in_rpolation

interval, Z7 add cycles must take place for each interpolation

interval. Thus, seven stages beyond the three needed for the

gating of one add cycle are needed to count the iterations. The add

control counter then has ten total stages.

The 1 to 0 transition of the last stage of the add control

counter or overflow of the counter means that sufficient add

iterations have occurred for an interval. Thus it is used to set

the cycle control flip-flop to again route pulses to the input

control counter. The 0 to 1 transition of the last stage flip-flop

provides the level change input to cause the tape block reader to

advance one block length. This transition occurs half way
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through the capacity of the add control counter and allows the tape

transient to be completed before a new reading cycle takes place.

The interchange between the operation of the input control

Q,.,_,v OLI_.LLc'.-'- .'._'

punched on the tape, During the input cycle in which this signal

appears, the stop control flip-flop is set to prevent further pulses

from reaching the control counters and thus stops the operation of

the path generator.

Tape Block Reader and Tape Punch

The input tape is read by Model 4112-R ELECTROBLOK

Reader manufactured by the Electronic Engineering Co, of

California. See the photograph of Fig. A.Z. 4a. This reader

features a stepping motor drive which advances the tape one block

length for each +25v trigger pulse input. The O to -12 volt level

change produced by the control logic is used as the input to the

circuit shown in Fig. A. 2.5b. This circuit then produces the

appropriate magnitude trigger pulse.

The block reader actually is capable of reading 12 lines of 8

level tape. However, only seven of these lines are needed and

used to provide the input information to the path generator.

Each output brush is connected by the circuit shown in Fig.

A. 2.5a to the appropriate input gate of the path generator. Thus,

k?
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A )  TAPE BLOCK R E A D E R  
- " .  * I"" - . _  

FIGURE A.2 .4  PHOTOGRAPHS OF 
TAPE EQUIPMENT 
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a punched hole on 1 on the tape causes a brush to contact the

common cylinder producing a ground level output. A blank or 0 on

the tape insulates the brush from the common cylinder and pro-

A,,_,_,, _._ _,_,_ _ .... _+ voltage of 1_ .._.1+_ a-_._ l^_J_-~

circuit by an input gate, of course, reduces the magnitude of this

voltage.

The block reader has the feature that the line connecting the

common cylinder to a voltage level, in this case ground, is opened

during tape transient. This prevents the arcing of the brushes.

The input tape to the reader is prepared using the tape punch

shown in the photograph of Fig. A.2.4b. The punching unit is

controlled by a console containing a switch for each of the eight

levels of tape plus a single line punch button. The tape feed hole

is automatically punched each time the punch button is activated.

Other holes are punched by turning on the appropriate column

switch prior to pushing the punch button.
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APPENDI X I I I

DETA/LED DESCRIPTION OF THE CONTROLLED SYSTEM

dimensional control system which accepts the absolute digital path

control inf0rmatidn from the input generator and converts this

information into a graphical record of the generated path. The

constructed system is composed of the following main elements:

1. Two-dimensional crossbar plotter,

Z. Feedback encoders and read-out logic,

3. Comparators, decoders and modulators, and

4. Servo amplifiers, motors and gear trains

This system is represented in block diagram form in Fig. A, 3.1.

General operation of such a system was discussed in Chapter I.

The actual controlled system is shown in the photograph of

Fig. A. 3. Z. The operation of each element will now be described

in detail.

Two-dimensional Crossbar Plotter

In order to provide a continuous graphical output record, a

two-dimensional plotter was constructed. See Fig. A. 3.3. This

plotter represents the system which is to be controlled by the

-105-
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FIGURE A.3.2 PHOTOGRAPH OF CONTROLLED 
SYSTEM 
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input generator. In practice this plotter would be replaced by

the actual physical system which is to be controlled. This

physical system could be a machine tool, an automatic drafting

machine, an orthotic arm aid, or any other device requiring two-

dimensional path control.

The plotter is based upon a crossbar mechanism. A

follower device which contains a recording pen is driven by two

shafts which are at right angles to one another. These shafts

pass through linear ball bushings which are mounted in the

follower device. These two right angle shafts provide the x and y

movements of the follower. Thus by simultaneously controlling

the positions of these shafts the follower can be made to generate

any two-dimensional contour.

The follower control shafts are moved by cables attached

to brackets at the ends of the shafts. These cable brackets

contain linear ball bushings which ride on shafts mounted in the

corner blocks of the system. Each cable passes over a drive

pulley and an idler pulley.

The two drive pulleys for each coordinate direction are con_

nected by a drive shaft. Each drive shaft is geared to a motor. A

bellows coupling connects each drive shaft directly to an encoder.
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The encoders used in this system produce a seven bit

output. Thus any of 27 or 128 distinct outputs are available.

Each quanta zone was chosen to repre sent 0. 080 inch linear

travel along an axis. Thus the length on any axis represented by

one rotation of the encoder is 128 x 0. 080 = 10. _40 inches. The

plotter thus can construct a contour over a 10. 240 inch square

area within an accuracy of 0. 080 inch on any axis. In order that

the encoders could be driven directly by the drive shafts, thus

eliminating any gearing and re sultant backlash pos sibilitie s, and

also in order that one encoder revolution would represent the full

linear travel of an axis, the pitch circumference of the drive

pulleys was chosen as 10. 240 inches giving a pitch radius of

1. 630 inches.

The plotter was constructed so that the x and y coordinate

inertias and drives are symmetric. Thus similar dynamic

properties can be expected in the two dimensions.

Feedback Encoders and Readout Logic

The analog feedback positions are converted to digital

representations by Librascope No. 707 V-brush binary encoders°

The basic part of this encoder is a disk with a binary code

pattern as sh_avn in Figo A. 3.4. _f brushes are placed on line as

shown, the binary number representing the position of the disk can
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be read from the brushes. In this example the coded pattern

array is arranged in a series of four zones, corresponding to the

capability of sensing four binary digits. The present position of

the disk represents the binary number 0101.

However_ the arrangement of brushes and zones as shown

in Fig. A. 3o 4 will not work in practice because of the ambiguity

which can occur in reading the coded pattern. To see this

consider the rotation of this sample disk from decimal 7 (0111)

to the decimal 8 (10001 position. All the brush contacts must

change their contacting status simultaneously.

This would require infinitely narrow brushes as well as

perfect alignment of both the brushes and the code zones. The

physical limitations obviously prevent any ideal transition and

some brushes change before others. For the natural binary code_

this can lead to some serious reading errors.

The V-brush method provides for reading out unambiguously

a binary coded disk. The logic for such a system can be deduced

from observation of the nature of the binary code. The sequence

of four bit binary numbers is given in Table A. 3-I.

Examination shows that when the least significant digit

changes from 0 to 1 in the direction of increasing count none of

the other digits change. Further, when the least significant digit
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TABLE A. 3-1

SEQUENCE OF FOUR BIT BINARY NUMBERS

Bir,_ry Nu_-nbe r

Position

Number, m

_'--:....' Equi aleLs_ _ ixn_. V nt

, ,, ......

3 Z 1 0 1 0

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 l 0 l 0

1 0 1 1 1 1

1 1 0 0 1 2

1 1 0 1 1 3

1 1 1 0 1 4

1 1 1 1 1 5
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changes from 1 to 0 in the increasing count direction, the digit

in the next most significant column always changes. Generalizing,

an increasing transition from 0 to 1 in the ruth row always causes

a change in the mth +1 digit.

A further observation can be made from Fig. A. 3.4.

Considering an increasing count, when the least significant digit

is 1, the count in the next column has not changed for a minimum

of the width of the least significant digit. When the least signi-

ficant digit is 0, the count in the next column will not change for

a minimum of the width of the least significant digit. Generaliz-

ing, whena digit in the mth column is 1, the digit in the m + 1

column has not changed for a minimum of 2 m rows and

similarly when a digit in the ruth column is 0 the digit in the

m + 1 column will not change for a minimum of 2 m rows.

These conclusions lead to a method of reading a natural

binary code pattern unambiguously. If a 1 i s read in the least

significant digit, then in the increasing count direction no change

in the next digit has occurred recently. If a 0 i s read in the

least significant digit, a change has occurred recently in the next

digit. Therefore, if two brushes were to read the next digit, one

leading and one lagging the reading line, any recent change or

absence of change could be read. Leading refers to displacement



-115-

in the direction of increasing count; lagging, to displacement in

the direction of decreasing count. The leading brush is read if

the least significant digit is 0 and the lagging brush if the least

significant digit is 1. So the next digit can be accurately read

based upon the reading of the least significant digit.

If the least significant column were removed, the code

pattern would remain the same with the sector representing a row

being twice the size of the original sector. The reasoning that

was applied to the least significant digit can now be applied to the

next digit and consecutively to the remaining columns of the disk.

The placement of the brushes should be symmetrical about

the reading line. The brush spacing for a given digit should be

equal to the segment width of the next lower order digit. The

brushes then fan out in a V-shaped exponential curve. Fig. A. 3.5

shows the placement of the brushes on a four digit disk. For the

reading line shown, the number to be read is 0101. Since the

least significant brush reads 1, the lagging brush is read in

column 1. This brush reads 0 so the lead brush is read in

column 2. This brush reads 1 so the lagging brush is selected

in column 3, which reads 0. Note that each brush that is read is

well within the segment which is to be read, eliminating

ambiguity.
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FIGURE A.3.5 -- V'BRUSH READOUT
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The difficulty with this type of readout is that a separate

logic circuit is needed with each column to select the proper

brush. The Librascope encoder used has seven columns

producing 2 7 = lZ8 distinct readout numbers. A brush is

grounded for a 1, and is open circuited for a 0. Three stages of

the seven stage logic that was used in reading the disk are

shown in Fig. A. 3.6.

In this circuit the least significant brush is B0, the leading

brush in column 1 is B 1 and the lagging brush [31. Similar

notation applies to the remaining stages.

The means of brush selection is based upon the inversion

property of a grounded emitter transistor amplifier. If B 0 is

open circuited, i.e., a 0 is read in column 0, an inverted signal

which tends toward -12 volts is fed to the base of the B
1

transistor. A ground signal is fed to the base of the _51 transistor.

Thus only the signal to the emitter of the B 1 transistor affects

the output which appears at the junction of the collectors of the

B 1 and B1 transistors since only the B 1 transistor can be biased

into operation. If B 1 is open circuited corresponding to a 0

being read, the output tends toward -12. volts. If B 1 is

grounded the output is ground level.
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If B 0 is grounded representing a binary 1, a signal

tending toward -12 volts appears at the base of the B1 transistor

and a ground signal appears at the base of the B 1 transistor.

Thus only the B1 signal can appear at the output collector

junctions. Hence, if the input to the first stage is 0, the leading

brush of the next stage is read. If the input to the first stage is 1_

the lagging brush of the next stage is read. This means of brush

selection is propagated through the stages.

In the above explanation it has been stated that a voltage

tends toward -1Z volts. In each case this signal terminates some-

where in the base of a grounded emitter amplifier. The maximum

drop across the base-emitter junction is a few tenths of a volt so

that signals which tend toward -12 volts are actually approximately

- O. Z volts.

The inverted brush input for each stage is inverted once

again by a grounded-base amplifier. The output of this

amplifier drives an indicator light and also serves as the output

for every other stage. Due to the nature of the comparison

operation, every other output must be inverted. At the output of

the odd stages_ -1Z volts represents a 1 and 0 volts represents a

O. The inverse is true for the even stages.
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The actual brush selection takes place in serial form.

However, the propagation is accomplished with such rapidity that

the brush selection may be considered to take place in parallel

form. The readout of the stages in parallel form is thus

justified.

Comparators, Decoders and Modulators

The comparator is basically an arithmetic subtraction

unit which provides the sign and magnitude of the difference

between two natural binary coded numbers,

number and the encoder feedback number.

the input command

This unit, however,

solves a subtraction problem which is simpler than that

encountered in a general purpose computer since in this case both

the minuend and the subtrahend are always positive numbers.

For a general purpose computer both arguments may be either

positive or negative necessitating additional sign and operation

determination logic and possible special coding schemes for

negative numbers. The digital subtraction operation is reduced

to an addition operation by the following means. The oneVs

complement of the minuend is added to the subtrahend. :The

result is then treated according to the following rules:
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1. If there is no overflow carry from the most

significant stage, the result is positive and

equal in magnitude to the one's complement

of the sum.

2. If there is an overflow carry, the result is

negative and equal in magnitude to the sum

plus 1.

To see how these rules are derived consider subtracting

the two inherently positive natural binary numbers A(minuend)

and B(subtrahend), i.e., it is desired to find (A) - (B). If every

bit of the binary number A is inverted, the onets complement of

A is obtained which is given by:

A 1 = 2 n - 1 - A

where A 1 is the onets complement and n is the number of bits in

A. The subtraction operation desired is then:

(A) - (B) = 2n- 1 - A 1 - B

n A1=2 -( +B)- 1

l_ea r ranging,

or,

Ax + B = 2n - (A o B) _ X (A.3-1)

A 1 + B = Z n+ (B - A) - 1 (A.3-2)
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There are two possibilities to consider, A > B and A< :lB.

l: If A > B, the difference is positive or zero. Applying

Eq. A. 3-1 shows that A 1 + B is then the one!s

complement of the desired difference. No overflow

carry results.

2. If A < B, the difference is negative. Eq. A. 3-2

shows that there is an overflow (2 n) and that the

correct difference may be obtained by adding 1 to

the result ofA 1 + B.

Thus the rules previously stated for reducing the sub-

traction operation to one of addition have been derived.

The equations governing the addition operation for one

stage for binary numbers can l_dl_rived from Table A. 3-2. Here

.th
A. and B. are the 1 addend and augend bits to be added, C. is

1 1 1

th
the incoming carry from the previous stage, S. is the i sum

1

bit, and Ci+ 1 is the outgoing carry. The reduced logical

equations for the sum and carry bits are:

and

S. = A. _B B. • C. (A.3-3)
1 I i i

C. = A.B. + B.C. + A.C. (A. 3-4)
1 1 1 I I 1 1
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TABLE A. 3-Z

BINARY ADDITION TRUTH TABLE

A°

1

B°

1

C°

1

0 I 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 I I 1 1

So

1

Ci+l

0 1 1 0 1 0 0 1

0 0 0 1 0 1 1 1

S,

1
= A.[3.C. ÷ _B.C. + A[B.C. + A.B.C.

1 1 1 1 1 1 1 1 1 1 1 1

=A. _B. _C.
I i I

Ci+ 1 = A.B.C. +A.B.C. +kB.C. +A.B.C.
1 1 1 1 1 1 1 1 1 1 1 1

1

= A.B. • B.C. "_" A.C°
1 I i i I i

: A.B._;. + A.B._ + A.B.C. + A.B.C.
1 1 1 _ I 1 i 1 I i 1 1

I I I

Ci = A,B.C. + A.B.C. + kB.C. + AB.C.+I i i i i ii I i I li i

= _B. + B.G +_
II II Ii
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Also note that

S. =A. (B B. (BC;. (A. 3-5)
I I I 1

Q = A.B. + B.C. + A.C, (A. 3-6)_+1 1 1 11 1 1

This symmetry will be used later in constructing a full parallel

adder.

These equations have been implemented using threshold

II
logic techniques in a manner suggested by Kolb, Referring to

Table A. 3-2 and Eq. A.-3=4 it is seen that a carry is generated

.th
from the i position whenever any two or all three of the A., B.,

I I

and C. bits are present, Thus a transistor circuit with a
i

threshold such that the transistbr will be driven from a non-

conducting to a conducting state whenever two or more inputs are

present will produce outgoing carry information. Such a circuit

is shown using transistor Q1 in Fig, A, 3.7. Note that if the same

voltage levels are used to represent logical l's and O's at the

input and output, the negation of the carry function is produced.

For generation of the sum bit, a circuit is needed which

will go to a conducting state whenever an odd number of inputs is

present but will remain non-conducting for an even number of

inputs. Such a circuit is shown using transistor Q2 in Fig. A. 3.7.

It is achieved using the output of the carry out circuit as an
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additional input. The method of operation is as follows.

Transistor Q2 is non-conducting with no inputs. No carry is

being generated. Any one of the inputs A., B., or C. can cause
1 1 1

it to conduct. If, however, two or more of these inputs are

present, a carry is generated. This carry is used to inhibit

the transistor from going into the conducting state until all three

inputs are present. Again note that if the same voltage levels

are used to represent logical l's and 0's at the input and output,

the negation of the sum bit is obtained.

Utilizing the symmetric Eqs. A. 3-3 through A. 3-6, this

basic circuit can be combined to form a full parallel adder as

shown in _ig. A. 3.8. A minimum carry propagation time is

achieved for this logic since the carry only has to pass through

one transistor per stage. Alternate sum digits must be inverted

but this does not effect the carry propagation times. The inverter

circuit used is also shown in Fig. A. 3.7.

Since the sum or inverter transistors are not loaded in

the threshold circuit, they can be used to drive a voltage ladder

type of digital to analog decoder. The decoder used is also

shown in Fig. A. 3.8.
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The differential voltage output, V0, is produced by two

component voltages, VOL, the output voltage from the voltage

ladder alone, and VOC, the output voltage from the carry.

V o = V0L - V0C

The output of the voltage ladder is

Es(P)

¥0L = 2n

where E is the supply (in this case -12 volts) p is the binary
S

Z7
number input to the ladder, and n is the number of stages.

The carry output voltage is given by:

V0C = EsC 8

where C 8 is the Boolean carry function.

If the minuend is greater than or equal to the subtrahend,

C 8 = 0 and V0c = 0. Then p =SlS 2 ... $7 = _zn 1 - S), and

E
__s

V0L = 2n (2n- 1 -S).

But,

S = A 1 + B = 2n - (A- B) - I.

SO,

V 0 = V0L

E

= S(Zn Zn
y - 1= + (A- B) + I)

E

=__s (A-B)
V0 2n

(A. 3-7)
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Thus the output voltage is proportional to (A - B) for A > B.

If A < B, C 8 = i, Ben p = SIS Z ... $7 = Zn 1 - (B - A = I).

E

V0 = Vn L _ Vn C =[___s 2n . 1 - (B - A - I)] - E
v v gn s

E

V 0 = _(A - B) (A. 3-8)
Z

This is the same as Eq. A. 3-7, so that a differential voltage

output is obtained which is proportional in both magnitude and

sign to the difference of the inputs to the comparator. Any drift

in the supply affects only the proportionality constant since all

stages are driven by one voltage supply.

The differential signal is modulated so that it can be used to

drive the 60 cps. ac servomotors of the positioning table. This

modulation is accomplished as shown in Fig. A. 3.9.

The voltage generated from the C 8 transistor is applied to

the center tap of the primary of UTC A19 transformer. The

output from the voltage ladder is applied to the wiper of a C.P.

Clare HGS - 1004 mercury wetted contact chopper relay. The

outputs of the chopper relay are connected to the ends of the

transformer primary. Thus the differential voltage is applied

alternately across the two halves of the transformer primary,

producing a proportional signal in the secondary which has the
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proper phasing. This signal is filtered before using it to drive

the se rvo amplifier.

The drive to the chopper is provided by a standard filament

transformer with some additional phase lead elements which

allow proper phasing of the modulated voltage with respect to

line voltage.

Servo Amplifiers, Motors, and Gear Trains

The two-phase ac servomotor used was a Diehl Manufac-

turing Co. No. FPE 49-56-2 15 Watt Low Inertia Servomotor

with an ac tachometer and a high impedance control winding.

The voltage on the control winding determines the motor speed

while its phase determines the direction of motor rotation.

The prime mover amplifier used to supply this motor is

sh_wn in Fig. A. 3.10. Because of their high impedance, the

control windings are supplied directly by a pair of 6L6 tubes in

push-pull eliminating the need for an output transformer. The

phase of the tachometer feedback can be adjusted by the network

shown. The 100K potentiometer controls the feedback gain. The

signal from the wiper of this potentiometer is combined in the

first stage with the signal from the modulator to produce the

difference since the two signals are 180 ° out of phase. This
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difference is amplified and inverted to drive the output tubes in

push-pull operation. A small ac signal is used to bias the center

tap of the secondary of the transformer from the tachometer to

null out the small zero speed signal.

The two phase ac Diehl servomotor described above was

chosen because the prime mover power level is sufficient for the

needed positioning. There is no brush friction and the velocity

feedback allows the motor time constants to be reduced. The

stall torque can be easily handled by the instrument gear trains.

Each gear train was breadboa_ded using three meshes of ratios

5:1, 5:1, and 1.5:1 providing an overall ratio of 37.5:1.
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I NI TIAL CONDITI ON SAMPLE CALCULATI ONS

AND COD! NG TABLES

The initial conditions to the derivative registers at the start

of each path segment are calculated using Eqs. 2-28, 2-Z9 and

2-30. These equations are repeated here for convenience.

A 2 A3y0)1 Y0

Y'(%) =_ (AY0 2 + 3

1 A2
Y"(x0) =7 ( YO- A3y0 )

A3y0

yV"(Xo) = h3

(2-29)

(2-30)

Sample calculations for the initial conditions introduced at

point 23 of the closed contour and point 1 of the spiral will now be

presented. Also to be presented is the proper tape coding of these

conditions.

At point 23 of the closed contour, x is the dependent

variable. The values of the differences are Ax23 = -1, A2x23 = -1,

-134-
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A3Xz3 = -2. These are found from Fig. 4.3. Interchange ofand

the roles of x and y in Eqs. 2-28, 2-29 and 2-30 then gives

- 1; Z -3 1
x'(y23 ) = 2 3(-1 +_--_) = Z (-1 _) ,

x"(yz3 ) = 2 -6 (-1 + 2)= 2 .6 , and

x,,,(yz3) = z"9 (-z)

The binary coding of the first derivative entry is then

-0.001 00101010 10101010

which when converted to twots complement form is

11.110 11010101

To conform with the tape format, this is entered on the three

lines of tape used for the first derivative as marked off. The

second de rivative entry become s

0.000100 00000000

Recalling that the highest order bit to be entered on the tape is

-3
2 , this is then entered on the two lines representing the second

derivative as marked off. The third derivative entry becomes

-.0010000 x2 -5
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which when converted to two's complement form is

I.III0000 x2.'5
,,_

This conforms to the tape format and is entered on the third

derivative line of the tape. These entries are shown in Block 23

of Fig. 4.5.

At point 1 of the spiral, Ay 0 11 A z A3y0= " ' Yo = 2, and = O.

These are found from Fig. 4.7. Using the appropriate formulas,

y,(xo) : z-3 (-ii-i):z-3 (-IZ),

y,,(Xo) = z -6 (z) : z -5, and

y'"(Xo) = 0

The binary coding of the entry to the first derivative

register is then

-1.100 00000000 00000000

which when converted to two's complement and the proper format

gives the entry to the tape lines representing the first derivative as

10.100

The coding of the second derivative entry becomes

-2
xz
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To conform to the tape format_ this is entered as marked off.

The coding to the third derivative entry is all 0ts. These entries

are shown in Block 1 of Fig. 4.8.

L..... _ ........ rence _ _,o _ _ _ o_ _,_ _,_d

derivative registers must be coded using the tape format shown

inFig. 4.4. Todothis, TablesA. 4_l, A. 4-ZandA. 4-3are

1 A4
used. The first two tables contain the coding of - _-_

(dependent variable) which is the correction term to the first

derivative register. The last table contains the tape coding for

11_ A4 (dependent variable) which is the correction term to the
hB

third derivative register. Remember that a straight binary

representation is used for positive corrections and a two's

complement representation is used for negative coreections.
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TABLE A° 4-1

CODING TABLE FOR FOURTH DIFFERENCE CORRECTIONS

TO THE FIRST DERIVATIVE REGISTER

Line 1 Line 2 Line 3

A4y 876543Z 1 876545Z I 876543Z 1

0 00000000 00000000 00000000

+1 00011111 11010101 01010110

+Z 00011111 10101010 10101011

+3 00011111 10000000 00000000

+4 00011111 01010101 01010110

+5 00011111 00101010 I0101011

+6 O0011111 00000000 00000000

+7 O0011110 llOlOlO1 OlOl_llO

+8 O0011110 lOlOlOlO lOlOlOll

+9 00011110 I0000000 00000000

+10 00011110 01010101 01010110

+11 00011110 00101010 10101011

÷lZ 00011110 00000000 00000000

+13 00011101 11010101 01010110

+14 00011101 10101010 10101011

+15 00011101 10000000 00000000
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TABLE A. 4-2

CODING TABLE FOR FOURTH DIFFERENCE CORRECTIONS

TO THE FIRST DERIVATIVE REGISTER

Line 1 Line 2 Line 3

_4y 87654321 87654321 87654321

0 00000000 00000000 00000000

-1 00000000 OOlOlOlO lO!OlOlO

-2 00000000 OlOlOlO1 OlOlOlO1

-3 00000000 I0000000 00000000

-4 00000000 I0101010 I0101010

-5 00000000 II010101 01010101

-6 00000001 00000000 00000000

-7 00000001 00101010 lOlOlOlO

-8 00000001 01010101 01010101

-g 00000001 I0000000 00000000

-10 00000001 10101010 10101010

"ll 00000001 ll010101 01010101

-t2 00000010 00000000 00000000

-13 00000010 00101010 I0101010

-14 00000010 01010101 01010101

-15 00000010 lO000000 00000000
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TABLE A. 4-3

CODING TABLE FOR FOURTH DIFFERENCE CORRECTIONS

TO THE THIRD DERIVATIVE REGISTER

Positive Negative

876543Z 1 A4y 876543Z I

00000000 0 00000000

00001000 1 11111000

00010000 Z 11110000

00011000 3 11101000

00100000 4 11 I00000

00101000 5 11011000

00110000 6 11010000

00111000 7 11001000

01000000 8 11000000

01001000 9 10111000

01010000 10 10110000

01011000 11 10101000

01100000 IZ 10100000

01101000 13 10011000

0 I 110000 14 10010000

0111 I000 15 10001000
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